KStarbound/src/main/kotlin/ru/dbotthepony/kstarbound/client/ClientWorld.kt

431 lines
12 KiB
Kotlin

package ru.dbotthepony.kstarbound.client
import it.unimi.dsi.fastutil.longs.Long2ObjectFunction
import it.unimi.dsi.fastutil.longs.Long2ObjectOpenHashMap
import it.unimi.dsi.fastutil.longs.LongArraySet
import it.unimi.dsi.fastutil.objects.ReferenceArraySet
import ru.dbotthepony.kstarbound.client.render.ConfiguredMesh
import ru.dbotthepony.kstarbound.client.render.LayeredRenderer
import ru.dbotthepony.kstarbound.client.render.Mesh
import ru.dbotthepony.kstarbound.client.render.MultiMeshBuilder
import ru.dbotthepony.kstarbound.defs.tile.LiquidDefinition
import ru.dbotthepony.kstarbound.math.roundTowardsNegativeInfinity
import ru.dbotthepony.kstarbound.math.roundTowardsPositiveInfinity
import ru.dbotthepony.kstarbound.world.CHUNK_SIZE
import ru.dbotthepony.kstarbound.world.ChunkPos
import ru.dbotthepony.kstarbound.world.World
import ru.dbotthepony.kstarbound.world.api.ITileAccess
import ru.dbotthepony.kstarbound.world.api.OffsetCellAccess
import ru.dbotthepony.kstarbound.world.api.TileView
import ru.dbotthepony.kstarbound.world.entities.Entity
import ru.dbotthepony.kstarbound.world.positiveModulo
import ru.dbotthepony.kvector.api.IStruct2i
import ru.dbotthepony.kvector.util2d.AABB
import ru.dbotthepony.kvector.vector.RGBAColor
import ru.dbotthepony.kvector.vector.Vector2f
import ru.dbotthepony.kvector.vector.Vector2i
class ClientWorld(
val client: StarboundClient,
seed: Long,
size: Vector2i? = null,
loopX: Boolean = false,
loopY: Boolean = false
) : World<ClientWorld, ClientChunk>(seed, size, loopX, loopY) {
init {
physics.debugDraw = client.gl.box2dRenderer
}
private fun determineChunkSize(cells: Int): Int {
for (i in 32 downTo 1) {
if (cells % i == 0) {
return i
}
}
throw RuntimeException("unreachable code")
}
val renderRegionWidth = if (size == null) 16 else determineChunkSize(size.x)
val renderRegionHeight = if (size == null) 16 else determineChunkSize(size.y)
val renderRegionsX = if (size == null) 0 else size.x / renderRegionWidth
val renderRegionsY = if (size == null) 0 else size.y / renderRegionHeight
fun isValidRenderRegionX(value: Int): Boolean {
if (size == null || loopX) {
return true
} else {
return value in 0 .. renderRegionsX
}
}
fun isValidRenderRegionY(value: Int): Boolean {
if (size == null || loopY) {
return true
} else {
return value in 0 .. renderRegionsY
}
}
inner class RenderRegion(val x: Int, val y: Int) {
inner class Layer(private val view: ITileAccess, private val isBackground: Boolean) {
private val state get() = client.gl
val bakedMeshes = ArrayList<Pair<ConfiguredMesh<*>, Int>>()
var isDirty = true
fun bake() {
if (!isDirty) return
isDirty = false
bakedMeshes.clear()
val meshes = MultiMeshBuilder()
for (x in 0 until renderRegionWidth) {
for (y in 0 until renderRegionHeight) {
if (!inBounds(x, y)) continue
val tile = view.getTile(x, y) ?: continue
val material = tile.material
if (material != null) {
client.tileRenderers.getMaterialRenderer(material.materialName).tesselate(tile, view, meshes, Vector2i(x, y), background = isBackground)
}
val modifier = tile.modifier
if (modifier != null) {
client.tileRenderers.getModifierRenderer(modifier.modName).tesselate(tile, view, meshes, Vector2i(x, y), background = isBackground, isModifier = true)
}
}
}
for ((baked, builder, zLevel) in meshes.meshes()) {
bakedMeshes.add(ConfiguredMesh(baked, Mesh(state, builder)) to zLevel)
}
meshes.clear()
}
}
private val liquidMesh = ArrayList<Pair<Mesh, RGBAColor>>()
var liquidIsDirty = true
val view = OffsetCellAccess(this@ClientWorld, x * renderRegionWidth, y * renderRegionHeight)
val background = Layer(TileView.Background(view), true)
val foreground = Layer(TileView.Foreground(view), false)
fun addLayers(layers: LayeredRenderer, renderOrigin: Vector2f) {
background.bake()
foreground.bake()
if (liquidIsDirty) {
liquidIsDirty = false
liquidMesh.clear()
val liquidTypes = ReferenceArraySet<LiquidDefinition>()
for (x in 0 until renderRegionWidth) {
for (y in 0 until renderRegionHeight) {
view.getCell(x, y)?.liquid?.def?.let { liquidTypes.add(it) }
}
}
for (type in liquidTypes) {
val builder = client.gl.programs.liquid.builder.builder
builder.begin()
for (x in 0 until renderRegionWidth) {
for (y in 0 until renderRegionHeight) {
val state = view.getCell(x, y)
if (state?.liquid?.def === type) {
builder.quad(x.toFloat(), y.toFloat(), x + 1f, y + state!!.liquid.level)
}
}
}
liquidMesh.add(Mesh(client.gl, builder) to type.color)
}
}
for ((baked, zLevel) in background.bakedMeshes) {
layers.add(zLevel + Z_LEVEL_BACKGROUND) {
it.push().last().translateWithMultiplication(renderOrigin.x, renderOrigin.y)
baked.render(it.last())
it.pop()
}
}
for ((baked, zLevel) in foreground.bakedMeshes) {
layers.add(zLevel) {
it.push().last().translateWithMultiplication(renderOrigin.x, renderOrigin.y)
baked.render(it.last())
it.pop()
}
}
if (liquidMesh.isNotEmpty()) {
layers.add(Z_LEVEL_LIQUID) {
it.push().last().translateWithMultiplication(renderOrigin.x, renderOrigin.y)
val program = client.gl.programs.liquid
program.use()
program.transform = it.last()
for ((mesh, color) in liquidMesh) {
program.baselineColor = color
mesh.render()
}
it.pop()
}
}
}
}
val renderRegions = Long2ObjectOpenHashMap<RenderRegion>()
fun renderRegionKey(x: Int, y: Int): Long {
if (size == null) {
return x.toLong() shl 32 or y.toLong()
} else {
return positiveModulo(x, renderRegionsX).toLong() shl 32 or positiveModulo(y, renderRegionsY).toLong()
}
}
/**
* all intersecting chunks
*/
inline fun forEachRenderRegion(pos: ChunkPos, action: (RenderRegion) -> Unit) {
var (ix, iy) = pos.tile
ix /= renderRegionWidth
iy /= renderRegionHeight
for (x in ix .. ix + CHUNK_SIZE / renderRegionWidth) {
for (y in iy .. iy + CHUNK_SIZE / renderRegionWidth) {
renderRegions[renderRegionKey(x, y)]?.let(action)
}
}
}
/**
* cell and cells around
*/
inline fun forEachRenderRegion(pos: IStruct2i, action: (RenderRegion) -> Unit) {
val dx = pos.component1() % renderRegionWidth
val dy = pos.component2() % renderRegionHeight
if (dx == 1 || dx == renderRegionWidth - 1 || dy == 1 || dy == renderRegionHeight - 1) {
val seen = LongArraySet(8)
for ((x, y) in ring) {
val ix = (pos.component1() + x) / renderRegionWidth
val iy = (pos.component2() + y) / renderRegionHeight
val index = renderRegionKey(ix, iy)
if (seen.add(index)) {
renderRegions[index]?.let(action)
}
}
} else {
val ix = pos.component1() / renderRegionWidth
val iy = pos.component2() / renderRegionHeight
renderRegions[renderRegionKey(ix, iy)]?.let(action)
}
}
override fun chunkFactory(pos: ChunkPos): ClientChunk {
return ClientChunk(this, pos)
}
fun addLayers(
size: AABB,
layers: LayeredRenderer
) {
val rx = roundTowardsNegativeInfinity(size.mins.x) / renderRegionWidth - 1
val ry = roundTowardsNegativeInfinity(size.mins.y) / renderRegionHeight - 1
val dx = roundTowardsPositiveInfinity(size.maxs.x - size.mins.x) / renderRegionWidth + 2
val dy = roundTowardsPositiveInfinity(size.maxs.y - size.mins.y) / renderRegionHeight + 2
for (x in rx .. rx + dx) {
for (y in ry .. ry + dy) {
if (!isValidRenderRegionX(x) || !isValidRenderRegionY(y)) continue
val renderer = renderRegions.computeIfAbsent(renderRegionKey(x, y), Long2ObjectFunction {
RenderRegion((it ushr 32).toInt(), it.toInt())
})
renderer.addLayers(layers, Vector2f(x * renderRegionWidth.toFloat(), y * renderRegionHeight.toFloat()))
}
}
val pos = client.screenToWorld(client.mouseCoordinatesF).toDoubleVector()
/*layers.add(-999999) {
val lightsize = 16
val lightmap = floodLight(
Vector2i(pos.x.roundToInt(), pos.y.roundToInt()), lightsize
)
client.gl.quadWireframe {
for (column in 0 until lightmap.columns) {
for (row in 0 until lightmap.rows) {
if (lightmap[column, row] > 0) {
it.quad(pos.x.roundToInt() + column.toFloat() - lightsize, pos.y.roundToInt() + row.toFloat() - lightsize, pos.x.roundToInt() + column + 1f - lightsize, pos.y.roundToInt() + row + 1f - lightsize)
}
}
}
}
}*/
/*layers.add(-999999) {
val rayFan = ArrayList<Vector2d>()
for (i in 0 .. 359) {
rayFan.add(Vector2d(cos(i / 180.0 * PI), sin(i / 180.0 * PI)))
}
for (ray in rayFan) {
val trace = castRayNaive(pos, ray, 16.0)
client.gl.quadWireframe {
for ((tpos, tile) in trace.traversedTiles) {
if (tile.foreground.material != null)
it.quad(
tpos.x.toFloat(),
tpos.y.toFloat(),
tpos.x + 1f,
tpos.y + 1f
)
}
}
}
}*/
//rayLightCircleNaive(pos, 48.0, falloffByTravel = 1.0, falloffByTile = 3.0)
/*
val result = rayLightCircleNaive(pos, 48.0, falloffByTravel = 1.0, falloffByTile = 3.0)
val result2 = rayLightCircleNaive(pos + Vector2d(-8.0), 24.0, falloffByTravel = 1.0, falloffByTile = 3.0)
val frame = GLFrameBuffer(client.gl)
frame.attachTexture(client.viewportWidth, client.viewportHeight)
frame.bind()
client.gl.clearColor = Color.BLACK
glClear(GL_COLOR_BUFFER_BIT)
client.gl.blendFunc = BlendFunc.ADDITIVE*/
/*client.gl.quadColor {
for (row in 0 until result.rows) {
for (column in 0 until result.columns) {
if (result[column, row] > 0.05) {
val color = result[column, row].toFloat() * 1.5f
it.quad(
pos.x.roundToInt() - result.rows.toFloat() / 2f + row.toFloat(),
pos.y.roundToInt() - result.columns.toFloat() / 2f + column.toFloat(),
pos.x.roundToInt() - result.rows.toFloat() / 2f + row + 1f,
pos.y.roundToInt() - result.columns.toFloat() / 2f + column + 1f
) { a, b -> a.pushVec4f(color, color, color, 1f) }
}
}
}
}
client.gl.quadColor {
for (row in 0 until result2.rows) {
for (column in 0 until result2.columns) {
if (result2[column, row] > 0.05) {
val color = result2[column, row].toFloat() * 1.5f
it.quad(
pos.x.roundToInt() - 8f - result2.rows.toFloat() / 2f + row.toFloat(),
pos.y.roundToInt() - result2.columns.toFloat() / 2f + column.toFloat(),
pos.x.roundToInt() - 8f - result2.rows.toFloat() / 2f + row + 1f,
pos.y.roundToInt() - result2.columns.toFloat() / 2f + column + 1f
) { a, b -> a.pushVec4f(color, 0f, 0f, 1f) }
}
}
}
}*/
/*val lightTextureWidth = (client.viewportWidth / PIXELS_IN_STARBOUND_UNIT).roundToInt()
val lightTextureHeight = (client.viewportHeight / PIXELS_IN_STARBOUND_UNIT).roundToInt()
val textureBuffer = ByteBuffer.allocateDirect(lightTextureWidth * lightTextureHeight * 3)
textureBuffer.order(ByteOrder.LITTLE_ENDIAN)
for (x in 0 until result.columns.coerceAtMost(lightTextureWidth)) {
for (y in 0 until result.rows.coerceAtMost(lightTextureHeight)) {
textureBuffer.position(x * 3 + y * lightTextureWidth * 3)
if (result[x, y] > 0.05) {
val color = result[x, y].toFloat() * 1.5f
textureBuffer.put((color * 255).toInt().coerceAtMost(255).toByte())
textureBuffer.put((color * 255).toInt().coerceAtMost(255).toByte())
textureBuffer.put((color * 255).toInt().coerceAtMost(255).toByte())
}
}
}*/
//frame.unbind()
// val texture = GLTexture2D(client.gl)
// textureBuffer.position(0)
// texture.upload(GL_RGB, lightTextureWidth, lightTextureHeight, GL_RGB, GL_UNSIGNED_BYTE, textureBuffer)
// texture.textureMinFilter = GL_LINEAR
// texture.textureMagFilter = GL_LINEAR
// client.gl.blendFunc = BlendFunc.MULTIPLY_BY_SRC
// client.gl.activeTexture = 0
// client.gl.texture2D = texture
// client.gl.programs.viewTextureQuad.run()
// client.gl.blendFunc = old
//frame.close()
//texture.close()
/*for (renderer in determineRenderers) {
renderer.renderDebug()
}*/
}
override fun thinkInner(delta: Double) {
val copy = arrayOfNulls<Entity>(entities.size)
var i = 0
for (ent in entities) {
copy[i++] = ent
}
for (ent in copy) {
ent!!.think(delta)
}
}
companion object {
val ring = listOf(
Vector2i(0, 0),
Vector2i(1, 0),
Vector2i(1, 1),
Vector2i(1, -1),
Vector2i(-1, 0),
Vector2i(-1, 1),
Vector2i(-1, -1),
)
}
}